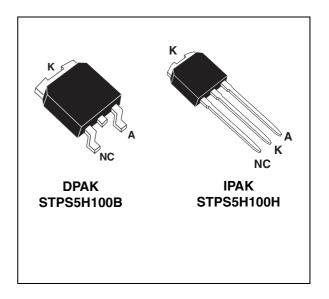


STPS5H100

High voltage power Schottky rectifier

Main product characteristics


I _{F(AV)}	5 A
V _{RRM}	100 V
T _j (max)	175° C
V _F (max)	0.61 V

Features and benefits

- Negligible switching losses
- High junction temperature capability
- Low leakage current
- Good trade off between leakage current and forward voltage drop
- Avalanche specification

Description

This high voltage Schottky barrier rectifier is packaged in DPAK and IPAK, and designed for high frequency miniature switched mode power supplies such as adaptators and on board DC to DC converters.

Order codes

Part number	Marking
STPS5H100B	S5H100
STPS5H100B-TR	S5H100
STPS5H100H	S5H100H

Table 1. Absolute ratings (limiting values)

	· ··· · · · · · · · · · · · · · · · ·			
Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage		100	V
I _{F(RMS)}	RMS forward voltage		10	Α
I _{F(AV)}	Average forward current	$T_c = 165^{\circ} \text{ C } \delta = 0.5$	5	Α
I _{FSM}	Surge non repetitive forward current	t _p =10 ms sinusoidal	75	Α
I _{RRM}	Repetitive peak reverse current $t_p = 2 \mu s F = 1 \text{ KHz}$		1	Α
I _{RSM}	Non repetitive peak reverse current $t_p = 100 \mu s$ square		2	Α
P _{ARM}	Repetitive peak avalanche power $t_p = 1 \mu s$ $T_j = 25^{\circ}$ C		7200	W
T _{stg}	Storage temperature range		-65 to + 175	°C
Tj	Maximum operating junction temperature ⁽¹⁾		175	°C
dV/dt	Critical rate of rise of reverse voltage		10000	V/µs

^{1.} $\frac{dPtot}{dT_j} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

Characteristics STPS5H100

Characteristics 1

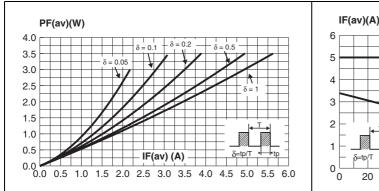
Table 2. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case	2.5	°C/W

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾ Reverse I	Reverse leakage current	T _j = 25° C	$V_R = V_{RRM}$			3.5	μΑ
'R`	neverse leakage current	T _j = 125° C			1.3	4.5	mA
	V (2) Farmand valtage dues	T _j = 25° C	I _F = 5 A			0.73	
V _E (2)		T _j = 125° C			0.57	0.61	V
V _F ⁽²⁾ Forward voltage drop	T _j = 25° C	I _F = 10 A			0.85	V	
		T _j = 125° C	11 _F = 10 A		0.66	0.71	

^{1.} Pulse test: $tp = 5 \text{ ms}, \delta < 2\%$


To evaluate the conduction losses use the following equation: P = 0.51 x $I_{F(AV)}$ + 0.02 I_{F}^{2} _(RMS)

$$P = 0.51 \times I_{F(AV)} + 0.02I_{F}^{2}_{(RMS)}$$

^{2.} Pulse test: tp = 380 μ s, δ < 2%

STPS5H100 Characteristics

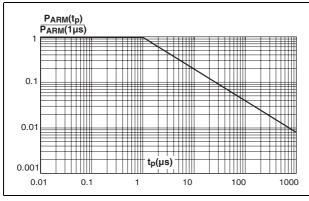
Figure 1. Average forward power dissipation Figure 2. Average forward current versus versus average forward current ambient temperature ($\delta = 0.5$)

IF(av)(A)

6

5

Rth(j-a)=Rth(j-a)=Rth(j-c)


Rth(j-a)=80°C/W

1

Note to provide the provided state of the pro

Figure 3. Normalized avalanche power derating versus pulse duration

Figure 4. Normalized avalanche power derating versus junction temperature

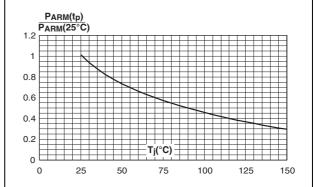
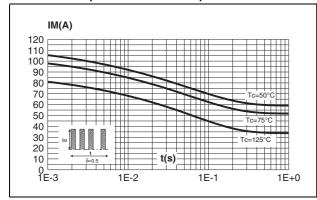
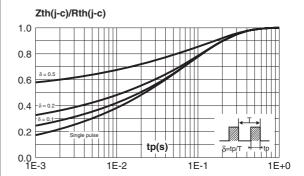
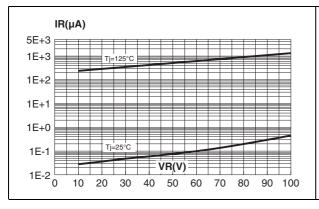




Figure 5. Non repetitive surge peak forward current versus overload duration (maximum values)

Figure 6. Relative variation of thermal impedance junction to case versus pulse duration



Characteristics STPS5H100

Figure 7. Reverse leakage current versus reverse voltage applied

Figure 8. Junction capacitance versus reverse voltage applied (typical values)

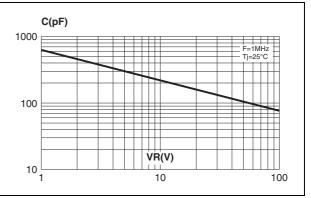
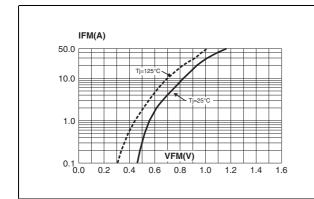
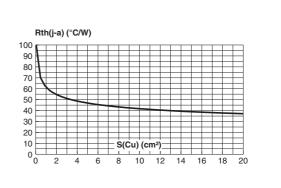
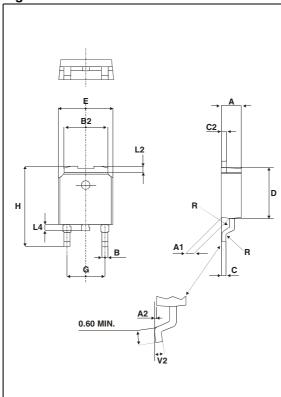




Figure 9. Forward voltage drop versus forward current (maximum values)

Figure 10. Thermal resistance junction to ambient versus copper surface under tab (Epoxy printed circuit board, copper thickness: 35 µm)


4/8

STPS5H100 Package information

2 Package information

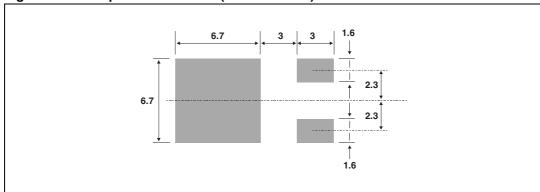

- Cooling method: by conduction (C)
- Epoxy meets UL94, V0

Figure 11. DPAK dimensions

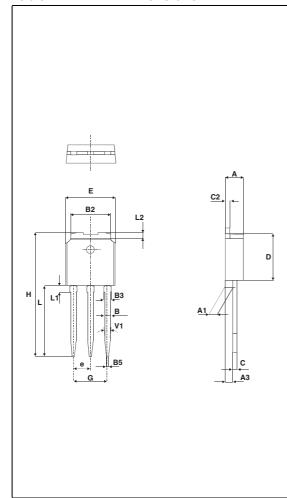

	Dimensions				
Ref	Millim	neters	Inc	hes	
	Min.	Max.	Min.	Max.	
Α	2.20	2.40	0.086	0.094	
A1	0.90	1.10	0.035	0.043	
A2	0.03	0.23	0.001	0.009	
В	0.64	0.90	0.025	0.035	
B2	5.20	5.40	0.204	0.212	
С	0.45	0.60	0.017	0.023	
C2	0.48	0.60	0.018	0.023	
D	6.00	6.20	0.236	0.244	
Е	6.40	6.60	0.251	0.259	
G	4.40	4.60	0.173	0.181	
Н	9.35	10.10	0.368	0.397	
L2	0.80 typ.		0.03	1 typ.	
L4	0.60	1.00	0.023	0.039	
V2	0°	8°	0°	8°	

Figure 12. Footprint dimensions (in millimeters)

Package information STPS5H100

Table 4. IPAK Dimensions

			Dimer	nsions		
Ref.	M	illimete	rs		Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.20		2.40	0.086		0.094
A1	0.90		1.10	0.035		0.043
А3	0.70		1.30	0.027		0.051
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.212
В3			0.95			0.037
B5		0.30			0.035	
С	0.45		0.60	0.017		0.023
C2	0.48		0.60	0.019		0.023
D	6		6.20	0.236		0.244
Е	6.40		6.60	0.252		0.260
е		2.28			0.090	
G	4.40		4.60	0.173		0.181
Н		16.10			0.634	
L	9		9.40	0.354		0.370
L1	0.8		1.20	0.031		0.047
L2		0.80	1		0.031	0.039
V1		10°			10°	

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

6/8

3 Ordering information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STPS5H100B	S5H100	DPAK	0.30 g	75	Tube
STPS5H100B-TR	S5H100	DEAR	0.30 g	2500	Tape and reel
STPS5H100H	S5H100H	IPAK	0.40 g	75	Tube

4 Revision history

Date	Revision	Description of changes
Jul-2003	6B	Last issue.
03-Nov-2005	7	DPAK footprint dimensions updated.
15-Feb-2006	8	ECOPACK statement added.
05-Mar-2007	9	IPAK package added.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com